Abstract

In this work, we study the trade-off between the running time of approximation algorithms and their approximation guarantees. By leveraging a structure of the hard instances of the Arora-Rao-Vazirani lemma [Sanjeev Arora et al., 2009; James R. Lee, 2005], we show that the Sum-of-Squares hierarchy can be adapted to provide fast, but still exponential time, approximation algorithms for several problems in the regime where they are believed to be NP-hard. Specifically, our framework yields the following algorithms; here n denote the number of vertices of the graph and r can be any positive real number greater than 1 (possibly depending on n). - A (2 - 1/(O(r)))-approximation algorithm for Vertex Cover that runs in exp (n/(2^{r^2)})n^{O(1)} time. - An O(r)-approximation algorithms for Uniform Sparsest Cut and Balanced Separator that runs in exp (n/(2^{r^2)})n^{O(1)} time. Our algorithm for Vertex Cover improves upon Bansal et al.'s algorithm [Nikhil Bansal et al., 2017] which achieves (2 - 1/(O(r)))-approximation in time exp (n/(r^r))n^{O(1)}. For Uniform Sparsest Cut and Balanced Separator, our algorithms improve upon O(r)-approximation exp (n/(2^r))n^{O(1)}-time algorithms that follow from a work of Charikar et al. [Moses Charikar et al., 2010].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.