Abstract

BackgroundWhite root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. The eradication of WRR is a difficult task and environmentally friendly control methods are needed to lessen its impact. Priming plants with a stressor (biotic or abiotic) can be a strategy to enhance plant defense/tolerance against future stress episodes but, despite the known underlying common mechanisms, few studies use abiotic-priming for improving tolerance to forthcoming biotic-stress and vice versa (‘cross-factor priming’). To assess whether cross-factor priming can be a potential method for enhancing avocado tolerance to WRR disease, ‘Dusa’ avocado rootstocks, susceptible to R. necatrix, were subjected to two levels of water stress (mild-WS and severe-WS) and, after drought-recovery, inoculated with R. necatrix. Physiological response and expression of plant defense related genes after drought-priming as well as the disease progression were evaluated.ResultsWater-stressed avocado plants showed lower water potential and stomatal limitations of photosynthesis compared to control plants. In addition, NPQ and qN values increased, indicating the activation of energy dissipating mechanisms closely related to the relief of oxidative stress. This response was proportional to the severity of the water stress and was accompanied by the deregulation of pathogen defense-related genes in the roots. After re-watering, leaf photosynthesis and plant water status recovered rapidly in both treatments, but roots of mild-WS primed plants showed a higher number of overexpressed genes related with plant defense than severe-WS primed plants. Disease progression after inoculating primed plants with R. necatrix was significantly delayed in mild-WS primed plants.ConclusionsThese findings demonstrate that mild-WS can induce a primed state in the WRR susceptible avocado rootstock ‘Dusa’ and reveal that ‘cross-factor priming’ with water stress (abiotic stressor) is effective for increasing avocado tolerance against R. necatrix (biotic stressor), underpinning that plant responses against biotic and abiotic stress rely on common mechanisms. Potential applications of these results may involve an enhancement of WRR tolerance of current avocado groves and optimization of water use via low frequency deficit irrigation strategies.

Highlights

  • White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions

  • The present study aims to test whether drought-priming could be used in avocado to increase tolerance to WRR disease

  • It has been reported that avocado ‘Dusa’ rootstock response to R. necatrix infection involves the impairment of water relations and photosynthesis [68,69,70] as well as the induction of genes related to water stress and pathogen defense responses [43]

Read more

Summary

Introduction

White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. Given the importance of this pathogen, many studies have been focused on the control of PRR and positive results, derived from an integrated approach involving the use of phosphate, proper field management and commercially available rootstocks with partial tolerance to P. cinnamomi (‘Thomas’, ‘Duke 7’ and ‘Dusa’) [5, 6], have been achieved. Another important soilborne disease affecting avocado groves in productive temperate regions such as South Africa, Israel, Italy and Spain (avocado exporters to the European market), is the white root rot (WRR) caused by Rosellinia necatrix Prill [7, 8]. Alternative approaches, focused on achieving environmentally friendly strategies to decrease WRR incidence in avocado production areas, are necessary

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call