Abstract

Water and salt stress often occur simultaneously in heavily irrigated arid agricultural areas, yet they are usually studied in isolation. To understand the physiological bases of water use efficiency (WUE) of field-grown maize (Zea mays) at multi-scales under combined water and salt stress, we investigated the joint effects of water and salt stress on physiology, growth, yield, and WUE of two genotypes (XY335 and ZD958). We measured leaf stomatal conductance (gs), net photosynthesis rate (A) and hydraulic traits, whole-plant growth and water use (ET), and final biomass and grain yield. Leaf osmotic adjustment was a key trait of the physiological differences between XY335 and ZD958 under water and salt stress. Although the responses of the two genotypes were different, mild water and salt stress improved intrinsic water use efficiency (iWUE = A/gs) by (i) decreasing gsvia increasing osmotic adjustment and hydraulic resistance, and (ii) declining A via increasing stomatal limitations rather than reducing photosynthetic capacity. Joint water and salt stress had a synergistic effect on reproductive growth and grain formation of maize. Mild water and salt stress reduced ET, stabilized grain yield, and improved grain WUE via declining gs, maintaining photosynthetic capacity, and improving harvest index. Collectively, our study provides a novel insight into the physiological mechanisms of WUE and demonstrates an approach for the efficient management of water and salt by using a growth stage-based deficit irrigation strategy or/and selecting genotypes with strong osmotic adjustment capacity and high harvest index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.