Abstract

We have previously demonstrated that traumatic injury of the lateral aspect of the right parietal cortex results in reduced acquisition of the passive avoidance task but enhanced learning in an active avoidance procedure. In order to try to explain the apparent dichotomy between these findings a series of experiments examined the effect of fluid percussion-induced traumatic brain injury (FP-TBI) on the conditioned freezing response to a context previously paired with an aversive stimulus. Rats subjected to FP-TBI displayed less conditioned freezing than the sham-operated controls. This effect was particularly marked when the delay between context exposure and footshock was short (≤30 s) and was no longer significant when this delay was 3 min, indicating that the injured animals did not have an impaired freezing response per se. This phenomenon was enduring such that it could still be observed 2 months following the surgery. There was no significant freezing deficit after FP-TBI of the motor cortex, demonstrating that the site of injury is important and that the freezing deficit is not a general response to CNS trauma. The NMDA receptor antagonist dizocilpine (MK-801, 1 mg/kg i.v.) significantly reduced the trauma-induced freezing deficit when administered as a single bolus 15 min prior to the surgery, or as three repeated treatments (3×0.33 mg/kg) 15 min, and 6 and 24 h following lesion. The trauma-induced deficit in conditioned freezing can explain the differences in active and passive avoidance behaviours and appears to be specific to lesion of the lateral parietal cortex. In addition, the behavioural deficit can be attenuated using the neuroprotective agent dizocilpine, suggesting that it may prove useful as a sensitive and specific measure of cortical damage following traumatic injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.