Abstract

The monoamine neurotransmitter serotonin (5-HT) is important for the regulation of behavior, and aberrations in 5-HT signaling are linked to several neuropsychiatric and neurodevelopmental disorders. 5-HT signaling is dependent on and tightly regulated by the functional activity of the 5-HT transporter (SERT). Neurotrauma is known to structurally and functionally impact 5-HT neuronal tracts and 5-HT signaling; however, the extent to which various forms of neurotrauma alter homeostatic 5-HT signaling through the modulation of SERT expression and/or functional uptake capacity is currently not well characterized. We aimed to better characterize the protein expression and uptake activity of SERT following mild traumatic brain injury (mTBI). A murine model of blast-induced mTBI was utilized to characterize alterations in SERT expression and function following injury. mTBI was found to decrease (≈26%) the protein levels of SERT 3 days postinjury (DPI) in the dorsal raphe nucleus (DRN), the primary locale of 5-HT neuronal cell bodies within the central nervous system. Concomitant reductions in midbrain SERT-dependent radiolabeled 5-HT uptake were observed 3 DPI (≈24%). No alterations in SERT expression were observed 10 DPI in the DRN. Additionally, no alterations in SERT expression or function were observed in prefrontal cortex samples at any time point observed. This data reveals time- and location-dependent alterations in SERT expression and function following mTBI. These studies illustrate the critical importance of ongoing research efforts to characterize the molecular effects of various forms of neurotrauma on SERT protein expression and function, which may yield novel drug targets within 5-HT systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call