Abstract

The rat hippocampus is hypersensitive to secondary cerebral ischemia after mild traumatic brain injury (TBI). An unconfirmed assumption in previous studies of mild TBI followed by forebrain ischemia has been that antecedent TBI did not alter cerebral blood flow (CBF) dynamics in response to secondary ischemia. Using laser Doppler flowmetry (LDF), relative changes in regional hippocampal CA1 blood flow (hCBF) were recorded continuously to quantitatively characterize hCBF before, during, and after 6 min of forebrain ischemia in either normal or mildly traumatized rats. Two experimental groups of fasted male Wistar rats were compared. Group 1 (n = 6) rats were given 6 minutes of transient forebrain ischemia using bilateral carotid clamping and hemorrhagic hypotension. Group 2 (n = 6) rats were subjected to mild (0.8 atm) fluid percussion TBI followed 1 h after trauma by 6 min of transient forebrain ischemia. The laser Doppler flow probe was inserted stereotactically to measure CA1 blood flow. The electroencephalogram (EEG) was continuously recorded. During the forebrain ischemic insult there were no intergroup differences in the magnitude or duration of the decrease in CBF in CA1. In both groups, CBF returned to preischemic values within one minute of reperfusion but traumatized rats had no initial hyperemia. There were no intergroup differences in the CBF threshold when the EEG became isoelectric. These data suggest that the ischemic insult was comparable either with or without antecedent TBI in this model. This confirms that this model of TBI followed by forebrain ischemia is well suited for evaluating changes in the sensitivity of CA1 neurons to cerebral ischemia rather than assessing differences in relative ischemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.