Abstract

The impact of neuroinflammation and microglial activation to Parkinson’s disease (PD) progression is still debated. Post-mortem analysis of PD brains has shown that neuroinflammation and microgliosis are key features of end-stage disease. However, microglia neuroimaging studies and evaluation of cerebrospinal fluid (CSF) cytokines in PD patients at earlier stages do not support the occurrence of a pronounced neuroinflammatory process. PD animal models recapitulating the motor and non-motor features of the disease, and the slow and progressive neuropathology, can be of great advantage in understanding whether and how neuroinflammation associates with the onset of symptoms and neuronal loss. We recently described that 18-month-old NF-κB/c-Rel deficient mice (c-rel−/−) develop a spontaneous late-onset PD-like phenotype encompassing L-DOPA-responsive motor impairment, nigrostriatal neuron degeneration, α-synuclein and iron accumulation. To assess whether inflammation and microglial activation accompany the onset and the progression of PD-like pathology, we investigated the expression of cytokines (interleukin 1 beta (Il1b), interleukin 6 (Il6)) and microglial/macrophage activation markers (Fc gamma receptor III (Fcgr3), mannose receptor 1 (Mrc1), chitinase-like 3 (Ym1), arginase 1 (Arg 1), triggering receptor expressed on myeloid cells 2 (Trem2)), together with microglial ionized calcium binding adapter molecule 1 (Iba1) and astrocyte glial fibrillary acidic protein (GFAP) immunolabeling, in the substantia nigra (SN) of c-rel−/− mice, at premotor (4- and 13-month-old) and motor phases (18-month-old). By quantitative real-time RT-PCR we found increased M2c microglial/macrophage markers expression (Mrc1 and Arg1) in 4-month-old c-rel−/− mice. M2-type transcription dropped down in 13-month-old c-rel−/− mice. At this age, the pro-inflammatory Il1b, but not Il6 or the microglia-macrophage M1-polarization marker Fcgr3/CD16, increased when compared to wild-type (wt). Furthermore, no significant variation in the transcription of inflammatory and microglial/macrophage activation genes was present in 18-month-old c-rel−/− mice, that display motor dysfunctions and dopaminergic neuronal loss. Immunofluorescence analysis of Iba1-positive cells in the SN revealed no sign of overt microglial activation in c-rel−/− mice at all the time-points. MRC1-Iba1-positive cells were identified as non-parenchymal macrophages in 4-month-old c-rel−/− mice. Finally, no sign of astrogliosis was detected in the SN of the diverse animal groups. In conclusion, this study supports the presence of a mild inflammatory profile without evident signs of gliosis in c-rel−/− mice up to 18 months of age. It suggests that symptomatic PD-like phenotype can develop in the absence of concomitant severe inflammatory process.

Highlights

  • Parkinson’s disease (PD) is the major neurodegenerative motor disorder worldwide, characterized by motor symptoms such as bradykinesia, resting tremor and rigidity

  • We analyzed the pro-inflammatory markers interleukin 1 beta (Il1b) and interleukin 6 (Il6), that are widely expressed in the central nervous system (CNS), and Fc gamma receptor III (Fcgr3)/CD16, that is expressed by M1-polarized microglia/macrophages

  • The present study shows that merely a mild inflammatory process, lacking a pronounced activation of microglia and astrocytes, anticipates substantia nigra (SN) degeneration in c-rel−/− mouse, a novel animal model of late-onset parkinsonism (Baiguera et al, 2012)

Read more

Summary

Introduction

Parkinson’s disease (PD) is the major neurodegenerative motor disorder worldwide, characterized by motor symptoms such as bradykinesia, resting tremor and rigidity. The neuropathological features of the disease have been well described, the biological basis of neuronal death still needs to be clarified. Processes such as neuroinflammation and microglial activation have been proposed to contribute to the onset of PD (Poewe et al, 2017). Microglia become activated, which can be either detrimental or protective for neuronal cells in the central nervous system (CNS; Hayakawa et al, 2008; Brites and Vaz, 2014; Hu et al, 2015). The opposite role of microglia in brain diseases has been hypothesized to arise from the fact that these cells can adopt diverse activation states (Tang and Le, 2016). Three different M2 sub-classes have been described: M2a, M2b and M2c, that have been associated with tissue repair, regulation of inflammation and tissue remodeling, and debris and iron scavenging, respectively (David and Kroner, 2011)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.