Abstract
Mild hypothermia (MH) is thought to be one of the most effective therapeutic methods to treat hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). However, its precise mechanisms remain unclear. In this research, hippocampal neurons were cultured and treated with mild hypothermia and Ac-DEVD-CHO after oxygen-glucose deprivation (OGD). The activity of caspase-3 was detected, in order to find the precise concentration of Ac-DEVD-CHO with the same protective role in OGD injury as MH treatment. Western blot and immunofluorescence staining were conducted to analyze the effects of MH and Ac-DEVD-CHO on the expressions of caspase-3, caspase-8, and PARP. The neuronal morphology was observed with an optical microscope. The lactic acid dehydrogenase (LDH) release rate, neuronal viability, and apoptotic rate were also detected. We found that MH (32 °C) and Ac-DEVD-CHO (5.96 μMol/L) had equal effects on blocking the activation of caspase-3 and the OGD-induced cleavage of PARP, but neither had any effect on the activation of caspase-8, which goes on to activate caspase-3 in the apoptotic pathway. Meanwhile, both MH and Ac-DEVD-CHO had similar effects in protecting cell morphology, reducing LDH release, and inhibiting OGD-induced apoptosis in neurons. They also similarly improved neuronal viability after OGD. In conclusion, caspase-3 serves as a key intervention point of the key modulation site or regulatory region in MH treatment that protects neuronal apoptosis against OGD injury. Inhibiting the expression of caspase-3 had a protective effect against OGD injury in MH treatment, and caspase-3 activation could be applied to evaluate the neuroprotective effectiveness of MH on HIE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.