Abstract

This article shares with the aerospace community a case study of turboprop mild hybridization using a recently developed integrated drive system in the University of Nottingham, U.K., within the ACHIEVE project under EU H2020 CleanSky 2 program (project No. 737814). The developed drive system enables the green taxiing of a turboprop aircraft while on the ground with its engine OFF and as an electrical generator when the turboprop is in the air. The entire system is designed to be able to integrate within the power auxiliary gearbox (PAGB) of a turboprop aircraft. Some of the key features of the developed system include a high-speed permanent magnet machine (up to 14200 rpm) with a dual-three-phase design, silicon carbide (SiC)-based high power density (11.8 kW/L for the power converter, and 35.3 kW/L and 7.2 kW/kg for the machine active parts), integrated cooling design for high-temperature operation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$&gt;130~^{\circ }\text{C}$ </tex-math></inline-formula> ambient temperature), fault tolerance consideration with dual-channel operation capabilities, and sensorless control for entire operational conditions. This article is giving an overview of the design process of the electrical machine, power converters, and the cooling of the entire drive. The numerical analysis [finite element method (FEM) and computational fluid dynamics (CFD)] and some experimental results are presented to demonstrate the effectiveness and the desired performance of the developed integrated drive system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.