Abstract
The prevalence of obesity and type 1 diabetes in children is increasing worldwide. Insulin resistance and augmented circulating free fatty acids associated with obesity may cause pancreatic β-cell endoplasmic reticulum (ER) stress. We tested the hypothesis that mild ER stress predisposes β-cells to an exacerbated inflammatory response when exposed to IL-1β or TNF-α, cytokines that contribute to the pathogenesis of type 1 diabetes. INS-1E cells or primary rat β-cells were exposed to a low dose of the ER stressor cyclopiazonic acid (CPA) or free fatty acids, followed by low-dose IL-1β or TNF-α. ER stress signaling was inhibited by small interfering RNA. Cells were evaluated for proinflammatory gene expression by RT-PCR and ELISA, gene reporter activity, p65 activation by immunofluorescence, and apoptosis. CPA pretreatment enhanced IL-1β- induced, but not TNF-α-induced, expression of chemokine (C-C motif) ligand 2, chemokine (C-X-C motif) ligand 1, inducible nitric oxide synthase, and Fas via augmented nuclear factor κB (NF-κB) activation. X-box binding protein 1 (XBP1) and inositol-requiring enzyme 1, but not CCAAT/enhancer binding protein homologous protein, knockdown prevented the CPA-induced exacerbation of NF-κB-dependent genes and decreased IL-1β-induced NF-κB promoter activity. XBP1 modulated NF-κB activity via forkhead box O1 inhibition. In conclusion, rat β-cells facing mild ER stress are sensitized to IL-1β, generating a more intense and protracted inflammatory response through inositol-requiring enzyme 1/XBP1 activation. These observations link β-cell ER stress to the triggering of exacerbated local inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.