Abstract
In this study, the sinocalamus oldhami alkali lignin was depolymerized into phenolic products in a combined system by using the composite alkali and Ni-W2C/activated carbon (AC) as catalysts. FT-IR, GPC, TG, 2D-HSQC and GC–MS were used to analyze the composition, structure and distribution of degradation products, and the synergistic effect of metal and alkali catalysts on the depolymerization of lignin was also studied. The results showed that Ni-W2C/AC and composite alkali could effectively improve the catalytic degradation efficiency of lignin under mild conditions, 94.4% of lignin was converted and 17.18% of phenolic monomers were obtained under 260 °C for 5 h. In this composite system, the synergism of the basic sites, the metal active sites and the Lewis acid sites could promote the cleavage of C–O bonds in the lignin molecule and lower the char formation during the base-catalyzed solvolysis. Phenolic monomers were mainly composed of phenol, 2-methyl-phenol and p-cresol etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.