Abstract

After mild ischemic insults, many neurons undergo delayed neuronal death. Aberrant activation of the cell cycle machinery is thought to contribute to apoptosis in various conditions including ischemia. We demonstrate that loss of endogenous cyclin-dependent kinase (Cdk) inhibitor p16(INK4a) is an early and reliable indicator of delayed neuronal death in striatal neurons after mild cerebral ischemia in vivo. Loss of p27(Kip1), another Cdk inhibitor, precedes cell death in neocortical neurons subjected to oxygen-glucose deprivation in vitro. The loss of Cdk inhibitors is followed by upregulation of cyclin D1, activation of Cdk2, and subsequent cytoskeletal disintegration. Most neurons undergo cell death before entering S-phase, albeit a small number ( approximately 1%) do progress to the S-phase before their death. Treatment with Cdk inhibitors significantly reduces cell death in vitro. These results show that alteration of cell cycle regulatory mechanisms is a prelude to delayed neuronal death in focal cerebral ischemia and that pharmacological interventions aimed at neuroprotection may be usefully directed at cell cycle regulatory mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.