Abstract
Lignin hydrogenolysis into monophenols presents a promising route for lignin-based chemical and fuel production but still suffers from harsh reaction conditions (e.g. high temperature and high external H2 pressure). Herein, we report an ultrafine Ni nanocluster anchored on N-doped carbon nanosheets (Ni/LNC) for efficient catalytic transfer hydrogenolysis of poplar organosolv lignin. The catalyst was fabricated through a simple pyrolysis process of lignin‑nickel complex mixed with melamine, in which the lignin coordination greatly improved the Ni dispersion and the strong NiN interaction inhibited the Ni nanocluster growth, resulting in the ultrafine particle size (1–2 nm). Under mild conditions (160 °C, 1 h), 22.08% of monophenol yield was obtained over the catalyst, which was significantly higher than those over the two reference catalysts (Ni/AC and Ni/LC) as well as other previously reported Ni-based catalysts. The excellent catalytic activity can be attributed to both the substantial increase in catalytic active sites and the enhancement in H transfer from methanol resulted from the electron-rich N-doped nanosheet support. Finally, magnetically recycled Ni/LNC showed excellent recycling stability. Consequently, this work presents a facile and low-cost approach for the synthesis of N-doped carbon nanosheet supported ultrafine Ni nanocluster and further demonstrates its superior applicability in lignin hydrogenolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.