Abstract

The oxidation reaction of regenerated cellulose fibers mediated by N-hydroxyphthalimide (NHPI) and various cocatalysts at room temperature for different time intervals and various amounts of low concentration sodium hypochlorite solution has been investigated to produce oxidized cellulose (OC), a biocompatible and bioresorbable polymer. The results revealed that the nonpersistent phthalimide-N-oxyl (PINO) radical generated in situ from NHPI in both, metallic or metal-free systems, is a powerful agent in this kind of transformation. Moreover, the reaction converts highly selectively C(6) primary hydroxyl groups to carboxylic groups under mild reaction conditions and shorter reaction times than previously reported. The amounts of negatively charged groups in OC were determined by means of potentiometric titration. Further characterization of the products were accomplished by using Fourier transform infrared spectroscopy/attenuated total internal reflection spectroscopy (FT-IR/ATR), environmental scanning electron microscopy (ESEM), and X-ray and energy-dispersive X-ray (EDX) spectroscopy. Notably, water retention values of the oxidized fibers increased by 30% in comparison with the original nonoxidized sample, as a result of the introduction of hydrophilic carboxylate groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.