Abstract

Abstract: A high-resolution palynological study of the Triassic–Jurassic boundary in the St. Audrie's Bay section revealed a palynofloral transition interval with four pronounced spore peaks in the Lilstock Formation. Regular cyclic increases in palynomorph concentrations can be linked with periods of increased runoff, and correspond to the orbital eccentricity cycle. Spore peaks can be related to precession-induced variations in monsoon strength. An implication is that the initial carbon isotope excursion lasted for at least 20 ka. Emergence during deposition of the Cotham Member had an influence on one of the peaks, which is dominated by spore-producing pioneer plants (e.g. horsetails and liverworts). There is no compelling evidence of a global end-Triassic spore spike that, by analogy with the K–T boundary fern spike, could be related to a catastrophic mass extinction event. Climate change is a more plausible mechanism to explain the increased amount of spores. Supplementary material: An alphabetical list of palynomorphs identified in the St. Audrie's Bay section is available at http://www.geolsoc.org.uk/SUP18406 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.