Abstract
ABSTRACT An enzyme-free electrochemical approach for ultra-trace quantification of the organophosphate insecticide malathion is proposed in this study. It is premised on screen-printed carbon electrodes modified by the MIL-88B(Fe) metal–organic framework (MOF). A one-pot solvothermal method was used to synthesise MIL-88B(Fe). The surface modification of electrodes allowed for increased electroactive surface area and accelerated electron transport on the electrode. Inhibition in the redox signal of MIL-88B(Fe) was observed due to the affinity between metal centres of the MOF and the functional groups of malathion, leading to an accurate determination of malathion. The proposed sensor effectively quantified malathion in the wide concentration range of 1 × 10−12 M to 1 × 10−6 M. The limit of detection for malathion was 0.79 pM. The proposed sensor also possessed excellent stability, repeatability, and anti-interference characteristics. Furthermore, the proposed sensor demonstrated satisfactory malathion recovery in spiked vegetable samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.