Abstract

To ensure the sustainable development of the nuclear industry, the effective capture of radioiodine from nuclear wastewater has attracted much attention. Herein, a novel MIL-88A(Al)/chitosan/graphene oxide (MCG) composite aerogel was prepared by using crosslinked chitosan and graphene oxide as the 3D network skeleton, and MIL-88A(Al) nanocrystalline particles were introduced into the skeleton by freeze-drying method. MIL-88A(Al) adsorption capacities for volatile and soluble iodine were 2.02 g g−1 and 850.00 mg g−1, respectively. Owing to the synergistic effect of MIL-88A(Al), GO, CS, and the hierarchically porous structures of the MCG aerogel, the adsorption capacities for volatile and soluble iodine by the MCG aerogel were increased to 2.62 g g−1 and 1072.60 mg g−1, respectively. Furthermore, the adsorption performance of the MCG aerogel for volatile and soluble iodine could be maintained at 83 % and 82 % after 5 cycles, suggesting excellent recoverability. Meanwhile, the adsorption mechanism studies showed the interactions between iodine and NH, AlO, and CO in MCG aerogel. Furthermore, the adsorption process is consistent with the Elovich kinetic and Sips isotherm models. MCG aerogels are potential candidates for enhanced radioiodine adsorption due to their high radioiodine capture performance and excellent recyclability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.