Abstract

Volatile methylsiloxanes (VMSs) are common silicone degradation byproducts that cause serious concern for the contamination of sensitive electronics and optics, among others. With the goal of fast, online detection of VMS, we herein highlight the mesoporous MIL-101(Cr) MOF as a promising mass sensing layer for integration with a quartz crystal microbalance (QCM), using an in-house modified gravimetric adsorption system capable of achieving extremely low concentrations of siloxane D4 (down to 0.04 ppm), targeting applications for monitoring in indoor spaces and spacecraft. Our developed MIL-101(Cr)@QCM sensor achieves near-perfect reversibility with no hysteresis alongside excellent repeatability over cycling and fast response/recovery times under 1 min. We attribute this capability to optimum host/guest interactions as uncovered through molecular simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.