Abstract

Metal–Sulfur (Li/Na–S) battery technology is considered one of the most promising energy storage systems because of its high specific capacity of 1675 mA h/g, attributed to sulfur. However, the rapid capacity degradation, mainly caused by metallic polysulfide dissolution, remains a significant challenge prior to practical applications. This work demonstrates for the first time that a Fe-based metal organic framework (MIL-100(Fe)) can remarkably stabilize the electrochemical behavior of sulfur-cathodes in Metal-S cells during prolonged cycling. The chemical and morphological properties of MIL-100(Fe) and, especially conjugated with their textural characteristics, can help immobilize lithium/sodium polysulfides within the highly microporous cathode structure. Capacity loss per cycle is 0.044 mA h after 3000 cycles at 2C in Li–S cells. This behavior is confirmed when the MOF-based cathode is studied in RT Na–S batteries, managing to stabilize the capacity with a loss of less than 0.08 % during 2000 cycles at 0.1 C-rate. The excellent performance can be attributed to the synergistic effects of the highly microporous structure of MOF-100(Fe), which provide an ideal matrix to confine polysulfides, and the presence of Fe(III) active centers that provide chemical affinities to sulfur and polysulfides. These factors contribute to the excellent cycling performance of the S@MIL-100(Fe) composite in Metal-Sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.