Abstract

Abstract Using a combination of modeling and experiments, we show that miktoarm star macromolecules act as molecular/mechanical linkers in the fabrication of multilayer stackable gels, which are formed by sequential controlled radical polymerization of successive layers in incompatible solvents. Dissipative particle dynamics simulations indicate that miktoarm star copolymers localize at the interface between the incompatible solvents and act as molecular bridging agents between the respective gel layers. Miktoarm stars composed of poly (n-butyl acrylate)-co-poly ((oligo (ethylene glycol) methacrylate) were synthesized by atom transfer radical polymerization (ATRP) and successfully used as an interfacial compatibilizer/linker in mechanically interconnected bilayer stacks comprised of a primary layer of cross-linked hydrophobic n-butyl methacrylate polymerized in toluene and of a secondary layer of cross-linked hydrophilic 2-(dimethylamino)ethyl methacrylate polymerized in water. Without the miktoarm stars, no connection between the two layers could be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.