Abstract
The classical Fourier multiplier theorem by Mikhlin in Hardy spaces is extended to the Heisenberg group. The proof relies on the theories of atom and molecule functions and the property of special Hermite functions. The main result is a Mikhlin-type Hp multiplier theorem on the Heisenberg group. If an operator-valued function M(λ) satisfies certain conditions, the right-multiplier operator TM is bounded on the Hardy space Hp(Hn), which is defined in terms of maximal functions, and elements can be decomposed into atoms or molecules. The paper also discusses the relationship with other results and open problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.