Abstract
Understanding the inherent structure of high-dimensional datasets is a very challenging task. This can be tackled from visualization, summarizing or simply clustering points of view. The Self-Organizing Map (SOM) is a powerful and unsupervised neural network to resolve these kinds of problems. By preserving the data topology mapped onto a grid, SOM can facilitate visualization of data structure. However, classical SOM still suffers from the limits of its predefined structure. Growing variants of SOM can overcome this problem, since they have tried to define a network structure with no need an advance a fixed number of output units by dynamic growing architecture. In this paper we propose a new dynamic SOMs called MIGSOM: Multilevel Interior Growing SOMs for high-dimensional data clustering. MIGSOM present a different architecture than dynamic variants presented in the literature. Using an unsupervised training process MIGSOM has the capability of growing map size from the boundaries as well as the interior of the network in order to represent more faithfully the structure present in a data collection. As a result, MIGSOM can have three-dimensional (3-D) structure with different levels of oriented maps developed according to data direction. We demonstrate the potential of the MIGSOM with real-world datasets of high-dimensional properties in terms of topology preserving visualization, vectors summarizing by efficient quantization and data clustering. In addition, MIGSOM achieves better performance compared to growing grid and the classical SOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.