Abstract

In the United States alone, over 7400 bird–aircraft collisions (birdstrikes) were reported in 2007. Most of these strikes occurred during takeoff or landing of the flight, and it is during these flight phases that aircraft experience their highest risk of substantial damage after colliding with birds. Birdstrikes carry enormous potential costs in terms of lives and money. Using feather remains and other tissue samples collected from the engines of US Airways Flight 1549, which crash landed in the Hudson River in New York City on 15 January 2009 after a birdstrike, we apply molecular tools and stable hydrogen isotopes to demonstrate that migratory Canada geese were responsible for the crash. Determining whether the geese involved in this birdstrike event were resident or migratory is essential to the development of management techniques that could reduce the risk of future collisions. Currently, the US civil aviation industry is not required to report birdstrikes, yet information on frequency, timing, and species involved, as well as the geographic origin of the birds, is critical to reducing the number of birdstrikes. Integrating this information with bird migration patterns, bird‐detecting radar, and bird dispersal programs at airports can minimize the risk of such collisions in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.