Abstract

Isomerization dynamics involving the migrations, proton transfer reaction, and catalytic actions of water molecules upon vertical ionization of the formamide (FA)-(H2O)2 cluster is investigated by the infrared spectroscopy and theoretical reaction path search calculation. The infrared spectroscopic result indicates the [FA-(H2O)2]+ cation has the hydrogen-bonded structure of the enol isomer cation of formamide and the water dimer. This structure is formed by proton transfer from the CH bond to the carbonyl group through the catalytic action of the water molecules. The isomerization paths involving this enolization in ionized FA-(H2O)2 are explored by using the anharmonic downward distortion following method. We found multiple enolization paths which accompany proton exchanges among the formamide moiety and water molecules through the catalytic actions of the water molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.