Abstract

ABSTRACTWe first report on migration-enhanced molecular beam epitaxial (MEMBE) growth and characterization of the GaAs layers on Si substrates (GaAs/Si). Excellent surface morphology GaAs layers were successfully grown on (100) Sisubstrates misoriented 4 toward [110] direction. The MEMBE growth method isdescribed and material properties are compared with those of normal two-step MBE-grown or in-situ annealed layers. Micrographs of cross-sectional view transmission electron microscopy (TEM) and scanning surface electron microscopy (SEM) of MEMBE-grown GaAs/Si showed dislocation densities of 107 cm-2 over ten times lower than those of two-step MBE-grown or in-situ annealedlayers. AlGaAs/GaAs double heterostructure lasers and light-emitting diodeshave been successfully grown on MEMBE GaAs/Si by both metal organic chemical vapor deposition and liquid phase epitaxy. MOCVD-grown lasers showed peak output power as high as 184 mW/facet, pulsed threshold currents as low as150 mA at 300 K, and differential quantum efficiencies of up to 30 %. The LPE-grown light-emitting diodes showed output powers of 1.5 mW and external quantum efficiencies of 3.3 mW/A per facet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call