Abstract

The effects of community dynamics in birds on the optimisation of their migratory strategies is a neglected area. For three years, we captured migrating warblers on autumn passage at a coastal site in western Britain. We used canonical correspondence analysis (CCA) to assess spatio‐temporal patterns of occurrence, and principal components analysis (PCA) to assess morphological variation. We calculated Euclidean distance in ordination and morphological space to assess separation between species pairs, and used Monte‐Carlo simulations to assess the probability of pattern occurring by chance. Ordination revealed five species‐groups separated by habitat type and time of passage. Reed Warbler Acrocephalus scirpaceus and Sedge Warbler A. schoenobaenus (Group 1) occurred in wet habitats and peaked simultaneously. In drier habitats with scrub, a first wave of Blackcap Sylvia atricapilla (Group 2) significantly preceded Grasshopper Warbler Locustella naevia, Willow Warbler Phylloscopus trochilus, Whitethroat Sylvia communis and Lesser Whitethroat Sylvia curruca (Group 3), which in all but one case (Lesser Whitethroat) significantly preceded Garden Warbler Sylvia borin (Group 4); peak numbers of Chiffchaffs Phylloscopus collybita and a second wave of Blackcaps (Group 5) occurred later still. Age effects were found only in Acrocephalus, with adults peaking before juveniles. For seven out of eight pairings within genera, separation in time of passage increased significantly in species that were morphologically similar. The only exception was Blackcap and Lesser Whitethroat which differed substantially in both passage time and morphology. Monte‐Carlo simulations showed that chance was unlikely to be responsible for ordination patterns, nor for inter‐specific variation in passage time and its relationship with species morphology. These data provide annually consistent evidence that migrating sylviid warblers are separated ecologically by habitat use, time of passage and morphology: we cannot refute the hypothesis that community dynamics have influenced niche use and autumn migratory strategy. We call for further tests of the ‘migrant interaction’ hypothesis in other geographical locations and taxa, particularly where migrants are allopatric and interact ecologically only on migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.