Abstract

Proper positioning of sympathetic preganglionic neurons(SPNs) in the spinal cord is regulated by reelin signaling. SPNs in reeler (which lacks reelin), and in mice deficient in components of the reelin signaling pathway (reelin receptors VldlR and ApoER2, the cytoplasmic adaptor protein Dab1, Src and Fyn of the Src-family of non-receptor protein tyrosine kinases, and CrkL) are located adjacent to the central canal instead of in the intermediolateral column (IML) of the spinal cord. Events downstream of CrkL in control of SPN migration are unclear. The present study asks whether Rap guanine nucleotide exchange factor (GEF) 1 (C3G/Rap-gef1), a Ras family GEF that binds CrkL, could act downstream in the reelin signaling pathway in control of SPN migration. SPN migration was examined in a hypopmorphic C3G mutant mouse (C3G(gt)(/gt)) by using retrograde Dil labeling and NOS immunostaining. The results showed that SPN in the C3G(gt)/(gt) mutant migrate abnormally toward the central canal as in reeler. However, unlike reeler, levels of reelin in the C3G(gt)/(gt) spinal cord are normal, and Dab1 immunostaining is undetectable. These results provide genetic evidence that C3G regulates SPN migration, and suggest that C3G acts downstream in the reelin signaling pathway in control of SPN migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.