Abstract

The lateral migration of a neutrally buoyant rigid sphere suspended in a second-order fluid is studied theoretically for unidirectional two-dimensional flows. The results demonstrate the existence of migration induced by normal stresses whenever there is a lateral variation of the shear rate in the undisturbed flow. The migration occurs in the direction of decreasing absolute shear rate, which is towards the centre-line for a plane Poiseuille flow and towards the outer cylinder wall for Couette flow. The direction of migration agrees with existing experimental data for a viscoelastic suspending fluid, and qualitative agreement is found between the theoretically predicted and experimentally measured sphere trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.