Abstract

In isothermal disks the migration of protoplanets is directed inward. For small planetary masses the standard type-I migration rates are so fast that this may result in an unrealistic loss of planets into the stars. We investigate the planet-disk interaction in non-isothermal disks and analyze the magnitude and direction of migration for an extended range of planet masses. We have performed detailed two-dimensional numerical simulations of embedded planets including heating/cooling effects as well as radiative diffusion for realistic opacities. In radiative disks, small planets with M_planet < 50 M_Earth do migrate outward with a rate comparable to absolute magnitude of standard type-I migration. For larger masses the migration is inward and approaches the isothermal, type-II migration rate. Our findings are particularly important for the first growth phase of planets and ease the problem of too rapid inward type-I migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call