Abstract

Delayed-type hypersensitivity (DTH) responses were suppressed in mice inoculated with bone marrow cells from mice that had been injected with 10(8) colony-forming units (CFU) of live BCG. Upon analysis of this DTH-suppression by the use of a macrophage migration inhibition (MI) assay, the in vitro correlate of DTH, suppressor macrophages in the peritoneal cavity were found to play an important role in DTH suppression. However, neither suppression of DTH nor production of suppressor macrophages was observed in mice inoculated with bone marrow cells from mice that had been injected with methotrexate (MTX), a folic acid antagonist, and 10(8) CFU of live BCG. Moreover, suppressor cells against the MI activity of peritoneal exudate cells from BCG cell wall-immunized mice existed in bone marrow cells from normal mice, natural suppressor (NS) cells, and they were sensitive to MTX. In addition, these NS cells phagocytized carbonyl iron particles, were adherent to Sephadex G-10, and had Fc receptors, but they had no B or T cell markers, suggesting that these cells belonged to a macrophage compartment. From this evidence, we hypothesized that the origin of suppressor macrophages in the peritoneal cavity induced by live BCG injection was MTX-sensitive NS cells in bone marrow, and that these NS cells were stimulated by a small dose of live BCG trapped in bone marrow after i.v. injection of a high dose of live BCG and migrated from bone marrow to the peritoneal cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call