Abstract

Keratinocytes are the prevalent cell type of the epidermis, a multilayered cornified epithelium which provides the cellular basis of the outermost barrier between the organism and its environment. By this barrier function the epidermis protects the organism against a variety of environmental hazards such as dehydration and mechanical stress. Under normal conditions, keratinocytes of all layers are interconnected by desmosomes and anchored by hemidesmosomes to a specialised type of extracellular matrix, the basement membrane. When the epidermis is injured, a vitally important response is initiated with the aim to restore the protective function of the epithelium. A fast but provisional sealing is achieved by the deposition of the fibrin clot before within 24 h after wounding keratinocytes from the wound margins begin to migrate into the wound bed, where they start to proliferate and to form the new epithelium. The development of new high-resolution assays for the study of cell migration and motility has potentiated major progress in our understanding of keratinocyte migration in vitro and in situ. The data reviewed here point to a sophisticated cooperation between soluble motogenic growth factors, cell-matrix interactions, and cell-to-cell communications as major parts of the machinery regulating keratinocyte migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.