Abstract
Peripheral nerve (PN) isografts provide a favourable environment for axon regeneration after peripheral and central nervous system (CNS) injury, but definitive information on the extent of cellular intermixing between donor and host tissues is lacking. We wished to compare migration patterns in fresh and predegenerate PN grafts, and also compare the extent of cell migration after transplantation to peripheral nervous system (PNS) versus CNS. To discern how host and donor cells interact after PN transplantation, sciatic nerve segments were transplanted from inbred adult mice into PN defects (PN-PN grafts) or into lesioned cerebral cortex of opposite gender siblings. Migrating male cells were identified using a Y-chromosome-specific probe and in situ hybridization methods, and characterized immunohistochemically. The extent of donor and host cellular intermixing was similar in fresh and predegenerate PN-PN isografts. There was substantial intermixing of donor and host cells by 8 days. Many host cells migrating into epineurial regions of grafts were immunopositive for F4/80 (macrophages). The endoneurium of grafted PN was also colonized by host cells; some were F4/80+ but many were immunostained with S-100 (Schwann cell marker). Donor S-100+ Schwann cells rapidly migrated out into proximal and distal host PN and by 12 weeks were found at least 2 mm from the grafts. Endoneurial microvessels in grafts were mostly donor-derived. By comparison, in male PN grafts to female CNS, even after 6 weeks few donor cells had migrated out into surrounding host cortex, despite the observation that almost all grafts contained regenerating axons and were thus attached to host CNS tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.