Abstract

AbstractMigration by Odonata may illuminate patterns and evolution of insect migration in general. As aquatic/aerial carnivores dragonflies differ from most migratory insects, and because they are large and diurnal, observational techniques are available that are impossible in most other insects. Geographic analysis of genetic structure and stable and radiogenic isotope composition and use of newly developed radio-tracking techniques has been applied to migration in the North American dragonfly, Anax junius. Southbound migrants move up to 2,800 km. Developmental phenology suggests early (‘resident’) and late (‘migrant’) cohorts at most sites, but these groups appear genetically identical, and the species is essentially panmictic in eastern North America. Apparently environmental cues and physiological responses to photoperiod and temperature engender migratory behaviour. Successful radio-tracking of individual A. junius has revealed alternating periods of migration and energy replenishment, and responses to wind and temperature similar to avian migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.