Abstract

Cyclobutane scaffolds are incorporated in several valuable natural and bioactive products. However, non-photochemical ways to synthesize cyclobutanes have scarcely been investigated. Herein, based on the principles of the electrosynthesis technique, we introduce a novel electrochemical approach for attaining cyclobutanes by a simple [2 + 2] cycloaddition of two electron-deficient olefins in the absence of photocatalysts or metal catalysts. This electrochemical strategy provides a suitable condition for synthesizing tetrasubstituted cyclobutanes with a variety of functional groups in good to excellent efficiency, compatible with gram-scale synthesis. In contrast to previous challenging methods, this approach strongly focuses on the convenient accessibility of the reaction instruments and starting materials for preparing cyclobutanes. Readily accessible and inexpensive electrode materials are firm evidence to prove the simplicity of this reaction. In addition, mechanistic insight into the reaction is obtained by investigation of the CV spectra of the reactants. Also, the structure of a product is identified by X-ray crystallography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call