Abstract

ABSTRACT Modeling cluster dynamics or rate theory to describe the microstructural evolution of irradiated materials requires a precise knowledge of the migration energy of a self-interstitial atom (SIA), a product of energetic particle radiation. We measured the evolution of the number density of SIA clusters in electron-irradiated α-iron at low temperatures (110–320 K) by in situ observation using high-voltage electron microscopy. We identified temperature-dependent physical quantities, including (1) the peak density of SIA clusters and (2) the critical defect-free zone thickness in a thin foil specimen, associated with interstitial mobility. By fitting these quantities to the Arrhenius relations derived by rate theory analysis, we obtained estimated interstitial migration energy values of and eV for (1) and (2), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.