Abstract

Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498μm in soils, mainly from 29 to 3394μm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.