Abstract
The effects of different concentrations of cadmium and 2,2′,4,4′,5,5′-hexabrominated diphenyl ether (BDE-153) on the growth and related physiological and biochemical indexes of Amaranthus mangostanus L. (amaranth) were studied. The results showed that the presence of BDE-153 promoted the absorption of Cd by the amaranth and inhibited the migration of Cd from the roots to the shoots. At the same time, 0.1 mg/L of Cd had a synergistic effect on the migration of BDE-153, but 5 mg/L Cd inhibited the accumulation of BDE-153 in the aboveground part of the amaranth. In addition, the kinetics of the uptake of pollutants by the amaranth showed that both Cd and BDE-153 could be transported by amaranth, but Cd and BDE-153 were mainly enriched in the roots, and the presence of Cd may cause a lag in the uptake of BDE-153 in the shoots. Compared with the control group, the biomass of the amaranth affected by BDE-153 and a high concentration of Cd (5 mg/L) decreased by 30.2–49.5%, the chlorophyll content decreased by 43.0–60.3%, the Evans blue increased, and the MDA content was higher. The activities of superoxide dismutase (SOD) and catalase (CAT) also decreased with an increase in the BDE-153 concentration. This indicates that the interaction between BDE-153 and a high concentration of Cd (5 mg/L) is more toxic to amaranth than single Cd pollution. This paper provides the necessary data support for phytoremediation of heavy metal and organic compound pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.