Abstract

Worsening recruitment of Alaskan Chinook salmon over the past decade has created major conservation problems. In Cook Inlet, lucrative Sockeye salmon fisheries are severely limited because of Chinook bycatch, restricting economic opportunity and creating political conflict between user groups. Although Chinook are thought to migrate at deeper depths than other salmon during the marine phase, an inability to quantify the depth difference has prevented regulatory changes to protect Chinook while allowing Sockeye fisheries to operate. Using a purpose-built acoustic telemetry array, we found that Chinook salmon repeatedly ‘patrolled’ back and forth in the nearshore fishing area for multiple weeks before river entry (a previously unrecognized behavior) while Sockeye salmon rapidly crossed the area to enter the river. Both species substantially increased migrations speeds at river entry. Migration speeds then progressively dropped, returning to baseline levels about 14 km upstream of the river mouth. Clear differences in the median depth of marine migration of Chinook (4.8 m) and Sockeye (1.8 m) were evident, enabling us to quantify the potential trade-off between reducing Sockeye harvest and increasing Chinook protection from using shallower gillnets in the commercial fishery. Based on the 16,608 depth measurements collected for Chinook and 3,389 measurements for Sockeye, reducing the vertical depth of surface-hung gillnets to one-half of current maximum depth would potentially reduce the Chinook interception rate by nearly two-thirds, while reducing Sockeye harvests by one-quarter. Alternatively, if commercial fishers were fully compensated for the reduced area of netting by allowing exactly compensatory increases in net length, Sockeye catches could potentially increase to 200% to 300% of current levels, but Chinook interceptions would remain similar to current levels despite reductions in net depth. Identifying an intermediate strategy between these two extremes could provide a ‘win-win’ solution rather than the current zero-sum game between deeply opposed stake-holders. Biotelemetry enabled rapid collection of very large numbers of depth measurements despite relatively few adults being tagged. The collected data have already been used to implement some of the first regulatory changes in the fishery in more than a decade and have identified a potential avenue for political accommodation between opposing user groups.

Highlights

  • Worsening recruitment of Alaskan Chinook salmon over the past decade has created major conservation problems

  • More Sockeye were detected by the acoustic array, differences in the migration behavior of the two species resulted in far more opportunities for transmissions from Chinook and provided a stronger dataset per individual (N = 19,371 detections for Chinook and 4,566 detections for Sockeye over the entire array)

  • Our 2013 pilot study identified a significant difference in migration depth between Chinook and Sockeye salmon returning to Cook Inlet

Read more

Summary

Introduction

Worsening recruitment of Alaskan Chinook salmon over the past decade has created major conservation problems. In Cook Inlet, the reduced productivity of Kenai River Chinook salmon complicates attempts to manage highly productive co-migrating Sockeye salmon (O. nerka) stocks while ensuring escapement goals are achieved for both species This has resulted in substantial conflict between multiple user groups: (1) the nearshore surface set gillnet commercial fishery; (2) the ‘offshore’ commercial drift gillnet fishery; and (3) multiple in-river and marine sport fishing groups [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]; an excellent history of the development of the Cook Inlet fisheries is summarized in [19]. Because the saltwater ESSN fishery targeting the much more abundant Sockeye catches a substantial proportion of the returning Kenai River Chinook [18], an ability to identify biological differences between the two species that could reduce Chinook catch when Sockeye fisheries are underway would be useful in identifying new management strategies that could better conserve Chinook stocks while retaining (or, ideally, improving) the economic benefits of the Sockeye fishery

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.