Abstract
The authors consider migration based synthetic aperture radar (SAR) imaging of surface or shallowly buried objects using both down-looking and forward-looking ground penetrating radar (GPR). The well known migration approaches devised to image the interior of the Earth are based on wave equations and have been widely and successfully used in seismic signal processing for oil exploration for decades. They have the potential to image underground objects buried in complicated propagation media. Compared to ray-tracing based SAR imaging methods, migration based SAR imaging approaches are more suited to imaging underground objects owing to their simple and direct treatment of oblique incidence at the air-ground interface and propagation velocity variation in the soil. The authors apply the phase-shift migration approach to both constant-offset and common-shot experimental data collected by PSI GPR systems. They address the spatial aliasing problems related to the application of migration to the GPR data and the spatial zero-padding approach to circumvent the problem successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.