Abstract

Antimony (Sb) is a recognized priority pollutant with toxicity that is influenced by its migration and transformation processes. Oxidation of Fe(II) to Fe(III) oxides, which is a common phenomenon in the environment, is often accompanied by the formation of Mn(III/IV) and might affect the fate of Sb. In this study, incorporated Mn(III) and sorbed/precipitated Mn(III/IV) associated with lepidocrocite were prepared by adding Mn(II) during and after Fe(II) oxidation, respectively, and the effects of these Mn species on Sb fate were investigated. Our results indicated that the association of these Mn species with lepidocrocite obviously enhanced Sb(III) oxidation to Sb(V), while concomitantly inhibiting Sb sorption due to the lower sorption capacity of lepidocrocite for Sb(V) than Sb(III). Additionally, Mn oxide equivalents increased in the presence of Sb, indicating that Sb oxidation by Mn(III/IV) associated with lepidocrocite was a continuous recycling process in which Mn(II) released from Mn(III/IV) reduction by Sb(III) could be oxidized to Mn(III/IV) again. This recycling process was favorable for effective Sb(III) oxidation. Moreover, Sb(V) generated from Sb(III) oxidation by Mn(III/IV) enhanced Mn(II) sorption at the beginning of the process, and thus favored Mn(III/IV) formation, which could further promote Sb(III) oxidation to Sb(V). Overall, this study elucidated the effects of Mn(III/IV) associated with lepidocrocite arisen from Fe(II) oxidation on Sb migration and transformation and revealed the underlying reaction mechanisms, contributing to a better understanding of the geochemical dynamics of Sb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.