Abstract

The Oklo natural reactor, Gabon, permits study of fission-produced elemental behavior in a natural geologic environment. The uranium ore that sustained fission reactions formed about 2 billion years before present (BYBP), and the reactor was operative for about 5 × 105 yrs between about 1.95 to 2 BYBP. The many tons of fission products can, for the most part, be studied for their abundance and distribution today. Since reactor shutdown, many fissiogenic elements have not migrated from host pitchblende, and several others have migrated only a few tens of meters from the reactor ore. Only Xe and Kr have apparently been largely removed from the reactor zones. An element by element assessment of the Oklo rocks' ability to retain the fission products, and actinides and radiogenic Pb and Bi as well, leads to the conclusion that no widespread migration of the elements occurred. This suggests that rocks with more favorable geologic characteristics are indeed well suited for consideration for the storage of radioactive waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.