Abstract

Leakage of light non-aqueous phase liquid (LNAPL) into soil can cause serious environmental issues. In this study, a two-dimensional device with adjustable dip angles was designed to investigate the migration and redistribution of LNAPL in natural inclined stratified soil media by the light transmission visualization (LTV) technology. The captured experimental images were processed to obtain the diesel distribution based on gray value which could represent the LNAPL saturation distribution. LNAPL may not be able to penetrate through the fine-coarse interface due to the capillary barrier effects. In this case, the vertical and horizontal migration distances (V and H), contaminated area (S), as well as deviation angle (γ) of centroid increased with the dip angle. Increasing the leakage amount to more than 30 mL would result in LNAPL breakthrough at the 10°-inclined interface, leading to much larger V, H, S, and γ than those at 10 mL, while 20-mL LNAPL failed to break through. In the latter case, a lower leakage rate than 10 mL/min would cause larger H and γ but similar V or S in the long term. This study could enrich the understanding of LNAPL contamination in vadose zone, providing reference for the prediction and treatment in realistic inclined contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.