Abstract

We developed a hand-held landmine detection sensor system, ALIS (Advanced Landmine Imaging System), combined with a metal detector and GPR (Ground penetrating radar). The system has a CCD camera attached on the sensor handle and can record the MD and GPR signal with the sensor position information. Therefore, it can offer the visual MD image and GPR image, which is used to define targets. But because ALIS is a hand-held system, the sensor position is random when it is operated in the field by human being. Also GPR normally suffers from very strong clutter. To deal with these problems, the interpolation is a common choice for both MD and GPR to create grid data set firstly and migration was used to improve the quality of GPR image. But generally the interpolation can not improve the quality of data set, although it can offer grid data set for visualization. Also for 3D GPR data set, it will consume much processing time. In fact, the migration can not only improve the quality of GPR data but also interpolate data to offer grid data set. It is a kind of 2.5D interpolation and just uses related data in the diffraction trajectory surface. So it can offer directly the visual GPR image and save the processing time. We will discuss two procedures for GPR, interpolation + migration or only migration, in this paper. Lastly, we also will report some results of evaluation test in 2006 February in Croatia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.