Abstract

Metastasis underlies cancer morbidity and accounts for disease progression and significant death rates generally and in non-small cell lung cancer (NSCLC) particularly. Therefore, it is critically important to understand the molecular events that regulate metastasis. Accumulating data portray a central role for protein synthesis, particularly translation initiation (TI) factors eIF4E and eIF4G in tumorigenesis and patients' survival. We have published that eIF4E/eIF4GI activities and consequently NSCLC cell migration are modulated by bone-marrow mesenchymal stem cell secretomes, suggesting a role for TI in metastasis. Here, we aimed to expand our understanding of the TI factors significance to NSCLC characteristics, particularly epithelial-to-mesenchymal transition (EMT) and migration, supportive of metastasis. In a model of NSCLC cell lines (H1299, H460), we inhibited eIF4E/eIF4GI's expressions (siRNA, ribavirin) and assessed NSCLC cell lines' migration (scratch), differentiation (EMT, immunoblotting), and expression of select microRNAs (qPCR). Initially, we determined an overexpression of several TI factors (eIF4E, eIF4GI, eIF4B, and DHX29) and their respective targets in NSCLC compared with normal lung samples (70–350%↑, P<0.05). Knockdown (KD) of eIF4E/eIF4GI in NSCLC cell lines (70%↓, P<0.05) also manifested in decreased target levels (ERα, SMAD5, NFkB, CyclinD1, c-MYC, and HIF1α) (20–50%↓, P<0.05). eIF4E/eIF4GI KD also attenuated cell migration (60–75%↓, P<0.05), EMT promoters (15–90%↓, P<0.05), and enhanced EMT suppressors (30–380%↑, P<0.05). The importance of eIF4E KD to NSCLC phenotype was further corroborated with its inhibitor, ribavirin. Changes in expression of essential microRNAs implicated in NSCLC cell migration concluded the study (20–100%, P<0.05). In summary, targeting eIF4E/eIF4GI reduces migration and EMT, both essential for metastasis, thereby underscoring the potential of TI targeting in NSCLC therapy, especially the already clinically employed agents (ribavirin/4EGI). Comparison of these findings with previously reported effects of eIF4E/eIF4GI KD in multiple myeloma suggests a collective role for these TI factors in cancer progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.