Abstract
Billions of vertebrates migrate to and from their breeding grounds annually, exhibiting astonishing feats of endurance. Many such movements are energetically costly yet there is little consensus on whether or how such costs might influence schedules of survival and reproduction in migratory animals. Here we provide a global analysis of associations between migratory behaviour and vertebrate life histories. After controlling for latitudinal and evolutionary patterns, we find that migratory birds and mammals have faster paces of life than their non-migratory relatives. Among swimming and walking species, migrants tend to have larger body size, while among flying species, migrants are smaller. We discuss whether pace of life is a determinant, consequence, or adaptive outcome, of migration. Our findings have important implications for the understanding of the migratory phenomenon and will help predict the responses of bird and mammal species to environmental change.
Highlights
Billions of vertebrates migrate to and from their breeding grounds annually, exhibiting astonishing feats of endurance
We address the following fundamental questions: (i) what are the main axes of variation of life-history strategies in migratory and non-migratory bird and mammal species?; (ii) how are life histories and migratory propensity linked when locomotion mode, biogeography and phylogenetic patterns are accounted for?; and (iii) how do life-history strategies vary across fully migratory, partially migratory and non-migratory flying species? Predictions are difficult to generate given the contradictory evidence base, but we propose that when migration has costs in terms of survival, migrants will be selected to ensure numerical compensation by reaching sexual maturity earlier or having higher annual reproductive outputs
We show that a migratory lifestyle is associated with a faster pace of life across a comprehensive group of mammal and bird species spanning almost the entire globe (Figs. 3 and 4)
Summary
Billions of vertebrates migrate to and from their breeding grounds annually, exhibiting astonishing feats of endurance. Other models predict that migration distances of larger flying species should not depend strongly on body mass[34] or might even decrease with increasing body mass in flapping birds[36] These contrasting viewpoints on how migration might covary with biological attributes (e.g., lifespan, body size, reproductive output) and environmental influences have prevented a generalised understanding of associations between migration and life history. The conflicts likely arise from a combination of the following: limited data sets and taxonomic coverage; confounding variables (e.g., body size, biogeography, etc); or failure to consider phylogenetic patterns in migration propensity, body mass and life history We address this using a global model of migratory tendency in mammals and birds that integrates life-history variation, biogeography, phylogeny and locomotion mode. All migrant flyers should share broad life history traits, we hypothesise that partial migrants should have life histories intermediate to residents and full migrants because of the more constrained lifestyle of the latter and the relative contribution of resident and migratory individuals into the life history estimates of partially migratory species
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.