Abstract

An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10^8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V_ub| and |V_cb| and, possibly, the first measurements of |V_td| in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1000 GeV. Such energies are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the HERA collider, but the luminosity would would be several orders of magnitude larger. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these energy scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call