Abstract

Endometrial cancer is the most common malignancy of the female genital tract. Progesterone (P4) has been used for several decades in endometrial cancer treatment, especially in women who wish to retain fertility. However, it is unpredictable which patients will respond to P4 treatment and which may have a P4 resistant cancer. Therefore, identifying the mechanism of P4 resistance is essential to improve the therapies for endometrial cancer. Mitogen-inducible gene 6 (Mig-6) is a critical mediator of progesterone receptor (PGR) action in the uterus. In order to study the function of Mig-6 in P4 resistance, we generated a mouse model in which we specifically ablated Mig-6 in uterine epithelial cells using Sprr2f-cre mice (Sprr2fcre+Mig-6f/f). Female mutant mice develop endometrial hyperplasia due to aberrant phosphorylation of STAT3 and proliferation of the endometrial epithelial cells. The results from our immunoprecipitation and cell culture experiments showed that MIG-6 inhibited phosphorylation of STAT3 via protein interactions. Our previous study showed P4 resistance in mice with Mig-6 ablation in Pgr positive cells (Pgrcre/+Mig-6f/f). However, Sprr2fcre+Mig-6f/f mice were P4 responsive. P4 treatment significantly decreased STAT3 phosphorylation and epithelial proliferation in the uterus of mutant mice. We showed that Mig-6 has an important function of tumor suppressor via inhibition of STAT3 phosphorylation in uterine epithelial cells and the anti-tumor effects of P4 are mediated by the endometrial stroma. This data helps to develop a new signaling pathway in the regulation of steroid hormones in the uterus, and to overcome P4 resistance in human reproductive diseases, such as endometrial cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.