Abstract
Recent studies have indicated that Macrophage migration inhibitory factor (MIF) plays an important role in the prevention and treatment of asthma. However the role of MIF in airway inflammation and airway epithelial barrier disruption in house dust mite (HDM)-induced asthma has not been addressed. We hypothesized that MIF contributed to HDM-induced the production of Th2-associated cytokines and E-cadherin dysfunction in asthmatic mice and 16HBE cells. In vivo, a HDM-induced asthma mouse model was set up and mice treated with MIF antagonist ISO-1 after HDM. The mice treated with the ISO-1 ameliorated airway hyper-reactivity, airway inflammation, increased serum IgE levels, the aberrant arrangement of E-cadherin as well as the release of Th2 cytokines induced by HDM. In vitro, the exposure of 16HBE cells to HDM and rhMIF resulted in airway epithelial barrier disruption, inflammatory cytokine production and enhanced glycolytic flux. While these changes were attenuated by MIF siRNA treatment. Sequentially, treatment of 16HBE cells with PFKFB3 antagonist PFK15 significantly lowered rhMIF-induced these changes in 16HBE cells. Therefore, these results indicate that MIF may be an important contributor in airway inflammation and airway epithelial barrier disruption of HDM-induced asthma. Moreover, HDM specifically induces airway inflammation and airway epithelial barrier disruption of 16HBE cells through MIF-mediated enhancement of aerobic glycolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.