Abstract
A detailed mathematical model is presented for a submicron-sized cluster formation in a binary gas mixture flowing through a three-staged conical nozzle. By measuring the angular distribution of light scattered from the clusters, the size of CO(2) clusters, produced in a supersonic expansion of the mixture gas of CO(2)(30%)/H(2)(70%) or CO(2)(10%)/He(90%), has been evaluated using the Mie scattering method. The mean sizes of CO(2) clusters are estimated to be 0.28 ± 0.03 μm for CO(2)/H(2) and 0.26 ± 0.04 μm for CO(2)/He, respectively. In addition, total gas density profiles in radial direction of the gas jet, measuring the phase shift of the light passing through the target by utilizing an interferometer, are found to be agreed with the numerical modeling within a factor of two. The dryness (= monomer/(monomer + cluster) ratio) in the targets is found to support the numerical modeling. The apparatus developed to evaluate the cluster-gas targets proved that our mathematical model of cluster formation is reliable enough for the binary gas mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.