Abstract
This work presents experimental tools for the determination of Minimum Ignition Energy (MIE) and results concerning the influence of an initial oxidation state on ignition threshold energies and flame velocity. These studies are carried out with micrometric aluminium particles which are oxidised using an anodising process. The first part of this work concerns the description of the experimental devices (Hartmann tube, for MIE measurements, and constant volume combustion chamber for flame velocity measurement with using high speed recording shadowgraphy). In the second part, a review of some results obtained for the sensitivity (MIE) of aluminium particle evolution versus particle diameter, air-fuel equivalence ratio and oxide content is presented. The effect of the oxide content is demonstrated: the MIE increases with the initial oxide content. The sensitivity of oxidised dust remains relatively high for high oxide contents (17.1wt%). The flame velocity is also modified and decreases as the oxide content increases. The most important result seems to be the role of the water content contained in the oxide shell which increases the reactivity of the oxidised aluminium dust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.